Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Res ; 1835: 148908, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582416

RESUMO

BDNF, a neurotrophic factor, and its receptors have been implicated in the pathophysiology of mild traumatic brain injury (mTBI). The brainstem houses many vital functions, that are also associated with signs and symptoms of mTBI, but has been understudied in mTBI animal models. We determined the extent to which neurotrophic protein and associated receptor expression is affected within the brainstem of adult rats following mTBI. Their behavioral function was assessed and temporal expression of the 'negative' regulators of neuronal function (p75, t-TrkB, and pro-BDNF) and 'positive' neuroprotective (FL-TrkB and m-BDNF) protein isoforms were determined via western blot and immunohistochemistry at 1, 3, 7, and 14 post-injury days (PID) following mTBI or sham (control) procedure. Within the brainstem, p75 expression increased at PID 1 vs. sham animals. t-TrkB and pro-BDNF expression increased at PID 7 and 14. The 'positive' protein isoforms of FL-TrkB and m-BDNF expression were increased only at PID 7. The ratio of t-TrkB:FL-TrkB (negative:positive) was substantial across groups and time points, suggesting a negative impact of neurotrophic signaling on neuronal function. Additional NeuN experiments revealed cell death occurring within a subset of neurons within the medulla. While behavioral measures improved by PID 7-14, negative neurotrophic biochemical responses persisted. Despite the assertion that mTBI produces "mild" injury, evidence of cell death was observed in the medulla. Ratios of TrkB and BDNF isoforms with conflicting functions suggest that future work should specifically measure each subtype since they induce opposing downstream effects on neuronal function.

2.
Clin Chim Acta ; 556: 117830, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38354999

RESUMO

Protease inhibitors (PIs) are associated with an incidence of lipodystrophy among people living with HIV(PLHIV). Lipodystrophiesare characterised by the loss of adipose tissue. Evidence suggests that a patient's lipodystrophy phenotype is influenced by genetic mutation, age, gender, and environmental and genetic factors, such as single-nucleotide variants (SNVs). Pathogenic variants are considered to cause a more significant loss of adipose tissue compared to non-pathogenic. Lipid metabolising enzymes and transporter genes have a role in regulating lipoprotein metabolism and have been associated with lipodystrophy in HIV-infected patients (LDHIV). The long-term effect of the lipodystrophy syndrome is related to cardiovascular diseases (CVDs). Hence, we determined the SNVs of lipid metabolising enzymes and transporter genes in a total of 48 patient samples, of which 24 were with and 24 were without HIV-associated lipodystrophy (HIVLD) using next-generation sequencing. A panel of lipid metabolism, transport and elimination genes were sequenced. Three novel heterozygous non-synonymous variants at exon 8 (c.C1400A:p.S467Y, c.G1385A:p.G462E, and c.T1339C:p.S447P) in the ABCB6 gene were identified in patients with lipodystrophy. One homozygous non-synonymous SNV (exon5:c.T358C:p.S120P) in the GRN gene was identified in patients with lipodystrophy. One novelstop-gain SNV (exon5:c.C373T:p.Q125X) was found in the GRN gene among patients without lipodystrophy. Patients without lipodystrophy had one homozygous non-synonymous SNV (exon9:c.G1462T:p.G488C) in the ABCB6 gene. Our findings suggest that novel heterozygous non-synonymous variants in the ABCB6 gene may contribute to defective protein production, potentially intensifying the severity of lipodystrophy. Additionally, identifying a stop-gain SNV in the GRN gene among patients without lipodystrophy implies a potential role in the development of HIVLD.


Assuntos
Infecções por HIV , Síndrome de Lipodistrofia Associada ao HIV , Lipodistrofia , Humanos , Síndrome de Lipodistrofia Associada ao HIV/genética , Síndrome de Lipodistrofia Associada ao HIV/complicações , Lipodistrofia/genética , Lipodistrofia/complicações , Lipodistrofia/epidemiologia , Mutação , Tecido Adiposo , Lipídeos , Infecções por HIV/complicações , Infecções por HIV/genética , Transportadores de Cassetes de Ligação de ATP/genética , Progranulinas/genética
3.
Front Cardiovasc Med ; 10: 1177054, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324630

RESUMO

HIV-associated lipodystrophy (HIVLD) is a metabolic condition with an irregularity in the production of lipoprotein particles, and its occurrence varies among HIV-infected patients. MTP and ABCG2 genes have a role in the transport of lipoproteins. The polymorphisms of MTP -493G/T and ABCG2 34G/A affect its expression and influence the secretion and transportation of lipoproteins. Hence, we investigated the MTP -493G/T and ABCG2 34G/A polymorphisms in 187 HIV-infected patients (64 with HIVLD and 123 without HIVLD) along with 139 healthy controls using polymerase chain reaction (PCR)-restriction fragment length polymorphism and expression analysis using real-time PCR. ABCG2 34A allele showed an insignificantly reduced risk of LDHIV severity [P = 0.07, odds ratio (OR) = 0.55]. MTP -493T allele exhibited a non-significantly reduced risk for the development of dyslipidemia (P = 0.08, OR = 0.71). In patients with HIVLD, the ABCG2 34GA genotype was linked with impaired low-density lipoprotein levels and showed a reduced risk for LDHIV severity (P = 0.04, OR = 0.17). In patients without HIVLD, the ABCG2 34GA genotype was associated with impaired triglyceride levels with marginal significance and showed an increased risk for the development of dyslipidemia (P = 0.07, OR = 2.76). The expression level of MTP gene was 1.22-fold decreased in patients without HIVLD compared with that in patients with HIVLD. ABCG2 gene was upregulated 2.16-fold in patients with HIVLD than in patients without HIVLD. In conclusion, MTP -493C/T polymorphism influences the expression level of MTP in patients without HIVLD. Individuals without HIVLD having ABCG2 34GA genotype with impaired triglyceride levels may facilitate dyslipidemia risk.

4.
Cell Mol Neurobiol ; 43(7): 3639-3651, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37314617

RESUMO

Blood brain barrier (BBB) breakdown is a key driver of traumatic brain injury (TBI), contributing to prolonged neurological deficits and increased risk of death in TBI patients. Strikingly, the role of endothelium in the progression of BBB breakdown has not been sufficiently investigated, even though it constitutes the bulk of BBB structure. In the current study, we investigate TBI-induced changes in the brain endothelium at the subcellular level, particularly focusing on mitochondrial dysfunction, using a combination of confocal imaging, gene expression analysis, and molecular profiling by Raman spectrometry. Herein, we developed and applied an in-vitro blast-TBI (bTBI) model that employs an acoustic shock tube to deliver injury to cultured human brain microvascular endothelial cells (HBMVEC). We found that this injury results in aberrant expression of mitochondrial genes, as well as cytokines/ inflammasomes, and regulators of apoptosis. Furthermore, injured cells exhibit a significant increase in reactive oxygen species (ROS) and in Ca2+ levels. These changes are accompanied by overall reduction of intracellular proteins levels as well as profound transformations in mitochondrial proteome and lipidome. Finally, blast injury leads to a reduction in HBMVEC cell viability, with up to 50% of cells exhibiting signs of apoptosis following 24 h after injury. These findings led us to hypothesize that mitochondrial dysfunction in HBMVEC is a key component of BBB breakdown and TBI progression.


Assuntos
Lesões Encefálicas Traumáticas , Células Endoteliais , Humanos , Células Endoteliais/metabolismo , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Barreira Hematoencefálica/metabolismo , Endotélio/metabolismo , Apoptose , Mitocôndrias/metabolismo
5.
Neuroscience ; 524: 52-64, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37182836

RESUMO

Cerebral ischemic reperfusion injury could emanate a cascade of events ensuing in neural death and severe neurobehavioural deficits. The currently available interventions have failed to target the multimodal, interlinked mechanisms that operate cerebral ischemia-induced damage and functional loss. So an integrative intervention has become a mandate to overcome the deleterious mechanisms involved in cerebral ischemic pathophysiology. In this study, adult male Sprague dawley rats were exposed to 2 hours of right middle cerebral artery occlusion (rMCAo) followed by reperfusion, and the intervention group received Fucoidan alone at a dose of 50 mg/kg, i.p (intraperitoneal), Cerebrolysin alone at a dose of 2.5 mg/kg body weight and the combination of both. The sham rats were exposed to surgical procedures, except for the rMCAo. The assessments of the groups were made 24 h after the rMCAo. The stand-alone treatment with Fucoidan, Cerebrolysin has shown a better outcome in the neurobehavioral and, histopathological assessments and the combination has made a significant reduction in the neurological deficits and the infarct volume when compared to the standalone groups. The BBB integrity was well preserved in the combination group when compared with the lesion and standalone groups. Moreover, the combined intervention reduced the level of pro-inflammatory cytokines TNFα, NFkB, IL1α, IL1-ß, IL-6, CD68, COX-2, and mRNA expression of inflammatory genes IL1α, IL1-ß, IL-6, IBA-1, and COX-2 effectively. In conclusion, the present study suggests that rMCAo induced neuroinflammation and neurobehavioural alterations were attenuated by intervention with a combination of Fucoidan and cerebrolysin; Further, Fucoidan and Cerebrolysin combination improved the ischemic tolerance level by promoting the proteins and genes that regulate the inflammatory cytokines and in aiding better recovery after ischemic reperfusion injury.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Traumatismo por Reperfusão , Ratos , Animais , Masculino , Doenças Neuroinflamatórias , Sulfatos/uso terapêutico , Ciclo-Oxigenase 2 , Interleucina-6 , Isquemia Encefálica/metabolismo , Ratos Sprague-Dawley , Polissacarídeos/uso terapêutico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo
6.
Front Cell Dev Biol ; 11: 1047308, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36949771

RESUMO

Introduction: Poly ADP-Ribose Polymerase-1 (PARP1), a DNA repair enzyme is implicated as a key molecule in the pathogenesis of several neurodegenerative disorders. Traumatic insults inducing oxidative stress results in its over-activation causing inflammation and cell death (Parthanatos). As PARP1 inhibition is known to reduce oxidative stress, we hypothesized that PARP1 inhibition by a known inhibitor 3-aminobenzamide (3AB) might recuperate the damage in an in vitro model of blast injury using HEI-OC1 cells (mouse auditory hair cells). Methods: Here, we evaluated the protective effect of 3AB on HEI-OC1 cells following single and repetitive blast overpressures (BOPs). Results: We found that inhibition of PARP1 b 3AB inhibits the PARP1 enzyme and its action of a post-translational modification i.e. formation of Poly ADP-Ribose Polymers which leads to massive ATP depletion. PARP inhibition (3AB treatment) reduced the oxidative stress (4HNE, a marker of lipid peroxidation, and 8OHdG, a marker of oxidative DNA damage) in cells exposed to single/repetitive BOPS through up-regulation of Nrf2, a transcriptional regulator of antioxidant defense and the GCLC, a rate limiting enzyme in the synthesis of glutathione. Discussion: Overall, we found that PARP inhibition by 3AB helps to maintain the viability of BOP-exposed auditory hair cells by recuperating the ATP pool from both mitochondrial and glycolytic sources.

7.
J Am Acad Audiol ; 33(3): 134-141, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-36216040

RESUMO

BACKGROUND: The cervical vestibular evoked myogenic potential (cVEMP) is a vestibular response that is produced by the saccule in response to intense, often low-frequency, short-duration auditory stimuli, and is typically recorded from a contracted sternocleidomastoid (SCM) muscle. Previous research has shown that the amplitude of the cVEMP is related to the amount of SCM electromyographic (EMG) activity. PURPOSE: The aim of this study was to determine the influence of various remote motoric maneuvers on the amplitude of the cVEMP, as well as whether they influence the level of SCM EMG activity. RESEARCH DESIGN: The cVEMP was recorded from the left SCM muscle to left ear stimulation, in response to the SCM condition, as well as three different motoric maneuvers (jaw clench, eye closure, and the Jendrassik maneuver). EMG activity was also varied between 50, 75, and 100% of maximal EMG activity. STUDY SAMPLE: Data from 14 healthy subjects, with a mean age of 25.57 years (standard deviation = 5.93 years), was included in the present study. DATA COLLECTION AND ANALYSIS: Mean latency and amplitude of the cVEMP were compared across the four conditions and varying magnitudes of EMG contraction. SPSS 26 was used to statistically analyze the results. RESULTS: cVEMP latency did not vary across condition. cVEMP amplitude decreased with decreasing EMG magnitude. SCM contraction with jaw clench produced the largest increase in cVEMP amplitude; however, this condition was not significantly different from the SCM condition alone. SCM contraction with the Jendrassik maneuver produced a cVEMP amplitude that was similar and not statistically different from SCM contraction alone, and the addition of the eye closure maneuver to SCM contraction resulted in the lowest cVEMP amplitude, which was found to be statistically different from the standard SCM condition at 100 and 75% EMG activity. The amplitude relationship across the conditions was not found to vary with changes in EMG activity; however, a significant increase in EMG amplitude was found during the 50% muscle contraction condition when subjects performed the Jendrassik maneuver in addition to the standard SCM contraction. CONCLUSIONS: The addition of the eye closure maneuver to SCM contraction resulted in a significant decrease in cVEMP amplitude, while the addition of the Jendrassik maneuver resulted in a significant increase in EMG activity at the lowest level of SCM activation (i.e., 50%). Additional research is necessary to determine how motoric maneuvers influence the cVEMP amplitude, and whether the results are also dependent on how SCM contraction is being produced (e.g., while supine vs. sitting).


Assuntos
Potenciais Evocados Miogênicos Vestibulares , Estimulação Acústica/métodos , Adulto , Eletromiografia/métodos , Humanos , Músculos do Pescoço/fisiologia , Sáculo e Utrículo , Potenciais Evocados Miogênicos Vestibulares/fisiologia
8.
Dev Neurosci ; 44(6): 498-507, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35609517

RESUMO

The thorny protrusions or spines increase the neuronal surface area, facilitate synaptic interconnections among neurons, and play an essential role in the hippocampus. Increasing evidence suggests that testosterone, the gonadal hormone, plays an important role in neurogenesis and synaptic plasticity. The role of testosterone on microtubule-associated proteins on dendritic neurite stability in the hippocampus and its impact on learning disability is not elucidated. Adult male Wistar albino rats were randomly selected for the control, castrated, castrated + testosterone, and control + testosterone groups. Bilateral orchidectomy was done, and the testosterone propionate was administered during the entire trial period, i.e., 14 days. The learning assessments were done using working/reference memory versions of the 8-arm radial maze and hippocampal tissues processed for histological and protein expressions. There were reduced expressions of microtubule-associated protein 2 (MAP2), postsynaptic density protein 95 (PSD95), and androgen receptor (AR) and increased expression of pTau in the castrated group. Conversely, the expression of MAP2, PSD95, and AR was increased, and the pTau expression was reduced in the hippocampus of the castrated rat administrated with testosterone. Androgen-depleted rats showed impaired synaptic plasticity in the hippocampus associated with contracted microtubule dynamics. Along with learning disability, there was an increased number of reference memory errors and working memory errors in castrated rats. Observations suggest that androgen regulates expression of neural tissue-specific MAPs and plays a vital role in hippocampus synaptic plasticity and that a similar mechanism may underlie neurological disorders in aging and hypogonadal men.


Assuntos
Deficiências da Aprendizagem , Testosterona , Animais , Ratos , Masculino , Testosterona/farmacologia , Androgênios/metabolismo , Ratos Wistar , Hipocampo/metabolismo , Proteínas Associadas aos Microtúbulos , Plasticidade Neuronal , Proteína 4 Homóloga a Disks-Large/metabolismo , Deficiências da Aprendizagem/metabolismo , Aprendizagem em Labirinto
9.
Front Neurol ; 13: 850337, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370886

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a high transmissible infectious disease that primarily impacts the respiratory system and leads to death as it worsens. Ever since the World Health Organization declared the disease as a global pandemic, the pathophysiology, clinical manifestations, and disease prognosis has been discussed in various literature. In addition to impaired respiratory health, the symptoms also indicated the involvement of the cardiovascular and neurological system after SARS-CoV-2 infection. Despite the pulmonary, cardiovascular, and neurological complications, many reports also revealed the prevalence of vestibulocochlear symptoms like dizziness, vertigo, vestibular neuritis, sudden sensorineural hearing loss, and tinnitus. Though many clinical reports and scientific reviews reported the vestibular and cochlear impairments associated with coronavirus disease 2019 (COVID-19) infection, the underlying pathological mechanisms are still unclear and unexplored. In this review, we discussed the published clinical reports, research articles, and literature reviews related to vestibulocochlear manifestations following SARS-CoV-2 infections. We also summarized the current knowledge about the prevalence, epidemiological and clinical features, and potential pathological mechanisms related to vestibular and cochlear manifestations resulting from COVID-19 infections.

10.
J Neurotrauma ; 38(23): 3248-3259, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34605670

RESUMO

In the present study, we have evaluated the blast-induced auditory neurodegeneration in chinchilla by correlating the histomorphometric changes with diffusion tensor imaging. The chinchillas were exposed to single unilateral blast-overpressure (BOP) at ∼172dB peak sound pressure level (SPL) and the pathological changes were compared at 1 week and 1 month after BOP. The functional integrity of the auditory system was assessed by auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAE). The axonal integrity was assessed using diffusion tensor imaging at regions of interests (ROIs) of the central auditory neuraxis (CAN) including the cochlear nucleus (CN), inferior colliculus (IC), and auditory cortex (AC). Post-BOP, cyto-architecture metrics such as viable cells, degenerating neurons, and apoptotic cells were quantified at the CAN ROIs using light microscopic studies using cresyl fast violet, hematoxylin and eosin, and modified Crossmon's trichrome stains. We observed mean ABR threshold shifts of 30- and 10-dB SPL at 1 week and 1 month after BOP, respectively. A similar pattern was observed in DPAOE amplitudes shift. In the CAN ROIs, diffusion tensor imaging studies showed a decreased axial diffusivity in CN 1 month after BOP and a decreased mean diffusivity and radial diffusivity at 1 week after BOP. However, morphometric measures such as decreased viable cells and increased degenerating neurons and apoptotic cells were observed at CN, IC, and AC. Specifically, increased degenerating neurons and reduced viable cells were high on the ipsilateral side when compared with the contralateral side. These results indicate that a single blast significantly damages structural and functional integrity at all levels of CAN ROIs.


Assuntos
Córtex Auditivo/patologia , Traumatismos por Explosões/patologia , Núcleo Coclear/patologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Perda Auditiva Provocada por Ruído/patologia , Colículos Inferiores/patologia , Doenças Neurodegenerativas/patologia , Animais , Córtex Auditivo/diagnóstico por imagem , Traumatismos por Explosões/complicações , Traumatismos por Explosões/diagnóstico por imagem , Chinchila , Núcleo Coclear/diagnóstico por imagem , Imagem de Tensor de Difusão , Modelos Animais de Doenças , Perda Auditiva Provocada por Ruído/diagnóstico por imagem , Colículos Inferiores/diagnóstico por imagem , Doenças Neurodegenerativas/diagnóstico por imagem
11.
Brain Res ; 1770: 147642, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34474000

RESUMO

Disruption of the blood-brain barrier (BBB) is a critical component of traumatic brain injury (TBI) progression. However, further research into the mechanism of BBB disruption and its specific role in TBI pathophysiology is necessary. To help make progress in elucidating TBI affected BBB pathophysiology, we report herein relative gene expression of eleven TBI biomarkers and other factors of neuronal function in human brain microvascular cells (HBMVEC), one of the main cell types in the BBB. Our in-vitro blast TBI model employs a custom acoustic shock tube to deliver injuries of varying intensities to HBMVECs in culture. Each of the investigated genes exhibit a significant change in expression as a response to TBI, which is dependent on both the injury intensity and time following the injury. This data suggests that cell signaling of HBMVECs could be essential to understanding the interaction of the BBB and TBI pathophysiology, warranting future investigation.


Assuntos
Traumatismos por Explosões/metabolismo , Barreira Hematoencefálica/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Expressão Gênica , Biomarcadores/metabolismo , Traumatismos por Explosões/genética , Traumatismos por Explosões/patologia , Barreira Hematoencefálica/patologia , Encéfalo/patologia , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/patologia , Células Endoteliais/patologia , Humanos
12.
Exp Mol Pathol ; 119: 104605, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33453279

RESUMO

Acoustic trauma damages inner ear neural structures including cochlear hair cells which result in hearing loss and neurotransmitter imbalances within the synapses of the central auditory pathway. Disruption of GABA/glutamate levels underlies, tinnitus, a phantom perception of sound that persists post-exposure to blast noise which may manifest in tandem with acute/chronic loss of hearing. Many putative theories explain tinnitus physiology based on indirect and direct assays in animal models and humans, although there is no comprehensive evidence to explain the phenomenon. Here, GABA/glutamate levels were imaged and quantified in a blast overpressure model of chinchillas using Fourier transform ion cyclotron resonance mass spectrometry imaging. The direct measurement from whole-brain sections identified the relative levels of GABA/glutamate in the central auditory neuraxis centers including the cochlear nucleus, inferior colliculus, and auditory cortex. These preliminary results provide insight on the homeostasis of GABA/glutamate within whole-brain sections of chinchilla for investigation of the pathomechanism of blast-induced tinnitus.


Assuntos
Vias Auditivas/metabolismo , Ácido Glutâmico/metabolismo , Espectrometria de Massas , Pressão , Ácido gama-Aminobutírico/metabolismo , Animais , Vias Auditivas/diagnóstico por imagem , Chinchila , Íons , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...